In smart structure applications where fiber sensors are embedded within structural materials, multiple lead in/out fibers are preferred for redundancy and improving reliability. The use of only one lead/out fiber is not optimal because the breakage of a fiber at one location due to, for example, local structural damage, would cause the failure of the whole sensing system. The multiplexing and networking techniques suitable for such applications have attracted considerable research recently. In this article, based on the bidirectional interrogation technique for white light interferometric sensors arrays, a multiplexed fiber optic deformation sensor loop network suitable for smart structure applications has been designed and demonstrated. Loop-network sensor systems are based on the white light interferometric technique. Michelson and Mach–Zehnder optical path interrogators have been developed and demonstrated, respectively. For the usually used one direction interrogate sensing system, it is clear that multiplexed sensor arrays suffer from relatively large fiber segment-induced optical reflective and excess insertion loss that generally limit the total number of sensors that can be accommodated in this configuration. This loop-network bidirection interrogating technique greatly extended the multiplexing capacity of fiber optic white light interferometric sensors system. A practical implementation of this technique is presented which makes use of a popular light emitting diode, superluminescent diode, or amplified spontaneous emission optical light source and standard single mode fiber, which are commonly used in the communication industry. The sensor loop topology is completely passive and absolute length measurements can be obtained for each sensing fiber segment so that it can be used to measure quasidistribution strain or temperature. For large-scale smart structures, this technique not only extends the multiplexing potential, but also provides a redundancy for the sensing system. It means that the sensor loop permits one point breakdown, because the sensing system will still work whenever the embedded sensor loop breaks somewhere.