A pulsed fiber laser with a wavelength of 1.06 µm was used to treat a commercial pure titanium surface in the air at intensities below the ablation threshold to provide oxide formation. Laser oxidation results are predicted by the chemical thermodynamic method and confirmed by experimental techniques (x-ray diffraction, energy dispersive x-ray spectroscopy). For the first time, the chemical thermodynamic method was used for determining the qualitative and quantitative phase-chemical composition of the compounds formed by a pulsed laser heating of commercial titanium in the air, and its applicability is proven. The simulation shows that multilayered composite film appears on a surface, the lower layers of which consist of Ti 2 O 3 and TiO oxides with the addition of titanium nitride; and the thin upper layer consists of transparent titanium dioxide. Also, the chemical composition of films remains unchanged within a temperature range of 881-2000 K.