The fundamental aerodynamic interactions between a pair of wind lenses is experimentally investigated. In prior work, wind tunnel testing of lensed turbines in a side-by-side configuration revealed that one lensed turbine outperformed its counterpart in terms of power production. In the current study, particle image velocimetry (PIV) was performed in the wake of three different pairs of wind lens profiles and revealed an inherent bias in the wake properties at close proximities which led to one turbine outperforming the other. The merged wake location is skewed to a single lens in the lens pair depending on the extent of cancellation of inboard vorticity magnitude. At 0.1 to 0.2 x/D,the individual wakes merge as one, at which point the vortex shedding frequency and the modal strength behind the lens pairs is reduced. Coincidentally, it is at this spacing that the net power output of lensed turbines placed in a side-by-side configuration reaches the maximum.