2021
DOI: 10.1002/essoar.10506025.1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Wavelet analysis of properties of marine boundary layer mesoscale cellsobserved from AMSR-E

Abstract: Marine boundary layer clouds over the colder regions of the ocean often organize into closed or open mesoscale cellular convection (MCC) with cell sizes between 10 and 100 km, modulating cloud water path (CWP), precipitation, and albedo (Agee et al., 1973). MCC is associated with significant mesoscale variations of moisture (∼10% relative humidity perturbation), temperature, and winds (Rothermel & Agee, 1980). MCClike patterns can be simulated in large-eddy simulations, weather, and climate models with horizon… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
2
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 35 publications
(57 reference statements)
1
2
0
Order By: Relevance
“…Open, closed, and disorganized MCC as identified by WH6 have distinct radiative (I. L. and microphysical (Muhlbauer et al, 2014;Zhou et al, 2021;Danker et al, 2022) properties, consistent with other MCC studies (e.g., Painemal et al, 2010;Wood, 2012;Terai et al, 2014;Bretherton et al, 2019;Watson-Parris et al, 2021;Kang et al, 2022). We utilize the updated MIDAS dataset and CF vs. albedo diagrams (following earlier studies Bender et al, 2011;Engstrom et al, 2015b;Feingold et al, 2016;Bender et al, 2017;Feingold et al, 2017) or more disorganized clouds (e.g., trade Cu) in the subtropics (e.g., Wyant et al, 1997;Yamaguchi et al, 2017;Eastman et al, 2021Eastman et al, , 2022.…”
Section: Radiative Impact Of Cloud Morphologiessupporting
confidence: 55%
See 2 more Smart Citations
“…Open, closed, and disorganized MCC as identified by WH6 have distinct radiative (I. L. and microphysical (Muhlbauer et al, 2014;Zhou et al, 2021;Danker et al, 2022) properties, consistent with other MCC studies (e.g., Painemal et al, 2010;Wood, 2012;Terai et al, 2014;Bretherton et al, 2019;Watson-Parris et al, 2021;Kang et al, 2022). We utilize the updated MIDAS dataset and CF vs. albedo diagrams (following earlier studies Bender et al, 2011;Engstrom et al, 2015b;Feingold et al, 2016;Bender et al, 2017;Feingold et al, 2017) or more disorganized clouds (e.g., trade Cu) in the subtropics (e.g., Wyant et al, 1997;Yamaguchi et al, 2017;Eastman et al, 2021Eastman et al, , 2022.…”
Section: Radiative Impact Of Cloud Morphologiessupporting
confidence: 55%
“…For example, open and closed mesoscale cellular convective (MCC) organization that dominate subtropical stratocumulus (Sc) cloud decks and marine cold-air outbreaks (Muhlbauer et al, 2014;Mohrmann et al, 2021) are distinctly different from the more disorganized cumulus (Cu) cloud structures in the tropical trade-winds (Stevens et al, 2019). The radiative properties of mesoscale morphology patterns differ even for the same cloud areal coverage (I. L. , indicating microphysical and macrophysical differences between organization structures (consistent with Painemal et al, 2010;Wood, 2012;Terai et al, 2014;Muhlbauer et al, 2014;Bretherton et al, 2019;Zhou et al, 2021;Watson-Parris et al, 2021;Kang et al, 2022). The occurrence of cloud morphology patterns is strongly connected to environmental factors (e.g., Atkinson & Zhang, 1996;Wood, 2012;Muhlbauer et al, 2014;Bony et al, 2020;Schulz et al, 2021;Mohrmann et al, 2021;Narenpitak et al, 2021).…”
Section: Introductionmentioning
confidence: 80%
See 1 more Smart Citation