The need to find related images from big data streams is shared by many professionals, such as architects, engineers, designers, journalist, and ordinary people. Users need to quickly find the relevant images from data streams generated from a variety of domains. The challenges in image retrieval are widely recognized, and the research aiming to address them led to the area of content‐based image retrieval becoming a “hot” area. In this paper, we propose a novel computationally efficient approach, which provides a high visual quality result based on the use of local recursive density estimation between a given query image of interest and data clouds/clusters which have hierarchical dynamically nested evolving structure. The proposed approach makes use of a combination of multiple features. The results on a data set of 65,000 images organized in two layers of a hierarchy demonstrate its computational efficiency. Moreover, the proposed Look‐a‐like approach is self‐evolving and updating adding new images by crawling and from the queries made.