Pattern recognition has become one of the fastest growing research topics in the fields of computer science and electrical and electronic engineering in the recent years. Advanced research and development in pattern recognition have found numerous applications in such areas as artificial intelligence, information security, biometrics, military science and technology, finance and economics, weather forecast, image processing, communication, biomedical engineering, document processing, robot vision, transportation, and endless other areas, with many encouraging results. The achievement of pattern recognition is most likely to benefit from some new developments of theoretical mathematics including wavelet analysis. This paper aims at a brief survey of pattern recognition with the wavelet theory. It contains the following respects: analysis and detection of singularities with wavelets; wavelet descriptors for shapes of the objects; invariant representation of patterns; handwritten and printed character recognition; texture analysis and classification; image indexing and retrieval; classification and clustering; document analysis with wavelets; iris pattern recognition; face recognition using wavelet transform; hand gestures classification; character processing with B-spline wavelet transform; wavelet-based image fusion, and others.