The Grove field is located in the Southern North Sea and has been in production since 2007. The Grove A well lies within block 49/10a and was originally planned by Centrica as an infill well, drilled horizontally in the central fault compartment of the Grove field structure. The well targeted the relatively undepleted basal "A" sandstone unit of the Late Carboniferous, Westphalian reservoir, also known as the Barren Red Measures (BRM).
The well objectives were to 1) target the Grove A sand from the G1 "donor" well, 2) establish a suitable completion strategy for field development, 3) assess the performance of a multiple stage (four to five) hydraulically fractured horizontal well, 4) acquire sufficient log data to fully evaluate the reservoir, and 5) acquire reliable permeability and reservoir pressure measurements to assist in reservoir simulation.
The A sand reservoir unit has a porosity of approximately 10% and permeability between 0.05 to 1 md, with a reservoir with true vertical thickness (TVT) of approximately 140 ft at the heel and 40 ft at the toe. The reservoir unit is poorly drained by the other wells, and the Grove infill well is the first horizontal gas well in the field to be stimulated by means of multistage hydraulic proppant fracturing. The hydraulic fracturing treatment used sand plug isolation to separate consecutive fracture stages, and the fracture stimulation operations were performed with the rig in place by means of a converted stimulation vessel. The stimulation treatments successfully used a modified sand plug methodology that employed aggressive breaker schedules and fluid injections rates that were determined to be more efficient than previous treatments based on employing strict "sand plug setting" criteria. The findings are presented, as well as analyses of both prefracturing and fracturing data for the treatments together with results of the well post-completion and hook-up production.
This work should be of interest to offshore operators world-wide performing multiple hydraulic fractures in both horizontal and vertical wells using sand plug isolation technology.