2019
DOI: 10.35940/ijrte.c5261.098319
|View full text |Cite
|
Sign up to set email alerts
|

Wavelet Transforms Based Fall Detection with Neuro-Fuzzy Systems Based Feature Selection

Abstract: Abstract: This study proposes a method to detect fall with minimum features selected by a non-overlap area distribution measurement (NADM) method. In preprocessing step, wavelet transforms were carried out to extract wavelet coefficients from dataset acquired by subjects. The NADM was used to select the minimum number of features from wavelet coefficients, and then 19 features were finally selected from the 33 features. The performance result of the fall detection was tested with 19 features, and then the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?