All machined surfaces inherently have roughness. The level of control of this surface is dependeat on the specifications outlined for its intended use. In strictly controlled situatiom, the monitoring and characterization of these surfaces becomes increasingly important to ensure that each component conforms to specifications. For this reason, the need f,)r in-situ monitoring systems has increased in order to optimize manufacturing time and minimize generated scrap for companies to remain competitive in industry. Current in-situ roughness monitoring systems, such as optical methods, are limited by the harsl: environments in which these systems are required to operate and the requirement for highly reflective materials. Accordingly, the need to develop a more robust system is required. The objective of this work was to develop and test a noncontact surface roughness characterization system which can be implemented into a machining center in order to provide in-situ measurements where currently available methods are rendered inappropriate.