“…锂离子电池以能量密度大、循环寿命长和自放 电率低等特点被广泛运用于移动电子产品、电动汽 车和电网储能等各个领域 [1][2][3][4] 。随着市场对锂离子电 池需求的逐渐增大, 有限的锂矿资源势必会成为锂 离子电池发展的瓶颈, 并导致成本随之上升 [5] 。 由于 钠与锂的化学性质相似, 且钠资源广泛分布于地壳 和海洋中, 成本低廉, 因此钠离子电池是最具潜力 的锂离子电池替代品之一, 尤其适用于大规模储能 领域 [6][7][8][9] 。 但是, 由于钠的标准电极电位比锂高 0.3 V, 导 致 钠 离 子 电 池 的 能 量 密 度 相 对 锂 离 子 电 池 偏 低 [10][11] 。并且, 钠的离子半径比锂大 1/3 左右, 离子 传输动力学差, 这使得许多在锂离子电池中应用广 泛的负极材料在钠离子电池上电化学性能不佳, 例 如石墨 [12][13] 。近几年, 基于合金化反应的金属负极 材料以其较高的比容量而受到广泛关注, 例如金属 锡和锑, 它们能够和钠反应形成 Na 15 Sn 4 、Na 3 Sb 合 金, 分别具有高达 847 和 660 mAh/g 的比容量 [14][15][16][17][18][19] 。 但是这些金属材料在充放电过程中, 体积会发生剧 烈的膨胀和收缩, 导致活性物质粉化, 颗粒间失去 电接触, 循环性能较差, 从而制约了其作为钠离子 电池负极材料的发展。 在锂离子电池中, 硅是一种极具潜力的高比容 量负极材料 [20][21][22][23][24] , 但先前研究发现, 将硅用作钠离 子电池负极材料时, 它几乎没有电化学活性 [25][26] 。 然而, Xu 等 [27] 通过化学气相沉积的方法制备了非晶 态和结晶态混合的硅纳米颗粒, 将其用作钠离子电 池负极材料, 获得了 248 mAh/g 的可逆容量, 证明纳 米尺度的硅在钠离子电池中具有一定的电化学活性。 由于沉积在导电衬底上的薄膜无需添加粘结剂 和导电剂即可直接作为电池的负极, 因此相较于粉 体材料而言, 薄膜是一个用来研究材料本身电化学 特性的理想体系 [28] [29] 。 将硅粉(≥99.0%)和锑粉(99.5%)按摩尔比 1 : 1 混合研 磨后压制成直径为 13 mm 的圆片状靶材。 由 Nd : YAG (Spectra Physics GCR-150)产生波长为 355 nm 的激 光束, 其脉宽为 5 ns, 重复频率为 10 Hz, 能量密度 为 2.5 J/cm 2 。激光与靶材表面法线形成 45入射角, 靶材表面与衬底基片距离为 4 cm。制备薄膜时将沉 积室抽真空至 6.010 3 Pa, 再通入氩气, 控制在 10 Pa, 不锈钢基片加热到 150℃, 沉积时间为 30 min。由 PLD 技术沉积得到的 Sb-Si 纳米复合薄膜厚度约为 100 nm, 质量约为 0.04 mg。复合薄膜中 Sb 和 Si 的 摩尔比通过电感耦合等离子体技术(ICP)进行了表 征, 约为 1 : 1.2(Sb : Si)。 [16] , 其中 0.7 [30] 与 Komaba 等 [31] 的报道一致, 也与图 1(b)中的 [32][33][34]…”