SummaryGiven a sequence of c-mixing random variables not necessarily stationary, a Chernoff-Savage theorem for two-sample linear rank statistics is proved using the Pyke-Shorack [5] approach based on weak convergence properties of empirical processes in an extended metric. This result is a generalization of Fears and Mehra [4] in that the stationarity is not required and that the condition imposed on the mixing numbers is substantially relaxed. A similar result is shown to hold for strong mixing sequences under slightly stronger conditions on the mixing numbers.