Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Summary In this paper, we propose a numerical method based on an active structural control to dampen the discrete critical frequencies from a fe/be coupled system, which models a time‐harmonic fluid‐structure interaction problem. The active structural acoustic control used consists of applying external forces directly on the structure, so that in the presence of critical frequencies, the linear system remains stable and, in turn, in the presence of non‐critical frequencies, the active control does not alter the system. We consider the problem in the framework of the theory of optimal control and present bi‐dimensional numerical simulations to show the behavior of the scheme in some vibro‐acoustic structures. Copyright © 2016 John Wiley & Sons, Ltd.
This paper is focused on an established, genuinely physical fluidstructure interaction model, herein the structure is immersed in a fluid with coupling taking place at the boundary interface between the two media. Mathematically, the model is a coupled parabolic-hyperbolic system of two partial differential equations in 3-d with nonstandard coupling at the boundary interface. Fluid and structure are mathematically expressed by the (dynamic) Stokes system (parabolic) and the Lamé system (hyperbolic), respectively. The main claim presented is a contraction semigroup well-posedness result on the natural space of finite energy. There are two main features in the analysis: (i) a nonstandard elimination of the pressure term, as the boundary coupling between fluid and structure rules out application of the classical Leray/Helmoltz projection; (ii) a nonstandard usage of the Babuska-Brezzi "inf-sup" theory to assert maximal dissipativity of the candidate generator. A unified treatment includes both undamped and (perhaps, partially) damped boundary conditions at the interface. With the generator explicitly at hand, an analysis of its point spectrum on the imaginary axis is also included. In the undamped case, it depends on the geometry of the structure. In the case of full boundary damping, it implies as a by-product a strong stability result for the solutions by soft methods.2000 Mathematics Subject Classification. Primary: 35A05, 35M10; Secondary: 35P05.
Three‐dimensional mathematical problems of interaction between elastic and scalar oscillation fields are investigated. An elastic field is to be defined in a bounded inhomogeneous anisotropic body occupying the domain Ω¯1⊂ℝ3 while a physical (acoustic) scalar field is to be defined in the exterior domain Ω¯2=ℝ3\Ω1 which is filled up also by an anisotropic (fluid) medium. These two fields satisfy the governing equations of steady‐state oscillations in the corresponding domains together with special kinematic and dynamic transmission conditions on the interface ∂Ω1. The problems are studied by the so‐called non‐local approach, which is the coupling of the boundary integral equation method (in the unbounded domain) and the functional‐variational method (in the bounded domain). The uniqueness and existence theorems are proved and the regularity of solutions are established with the help of the corresponding Steklov–Poincaré type operators and on the basis of the Gårding inequality and the Lax–Milgram theorem. In particular, it is shown that the physical fluid–solid acoustic interaction problem is solvable for arbitrary values of the frequency parameter. Copyright © 1999 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.