Glass/epoxy (G-E) products are widely used in numerous industries nowadays. This is due to favorable characteristics of these products including low cost, ease of manufacturing, good mechanical properties, and lightweight. The mechanical properties of G-E composites can be enhanced through mixing with natural reinforcement materials. In this work, we investigate the use of date seeds (DSs) as a reinforcement material for G-E composites. A DS filler has been added to G-E hybrid composites as a powder by applying a semiautomatic technique. Glass fibers reinforced with angle-ply ([±45]4) were considered as commonly used G-E composites. G-E reinforced DS composites were analyzed using various mechanical characteristics such as mica-hardness, tensile strength, and impact strength. Effects of the DS filler on the wear volume loss (VL) were investigated at different parameter settings. This loss was analyzed using the traditional Taguchi method and the nontraditional flower pollination algorithm to obtain optimal parameters. Surface inspection using a scanning electron microscope and Fourier-transform infrared (FTIR) was conducted. The results revealed that the addition of a 10% DS reinforcement to G-E composites enhanced the wear resistance and increased toughness and hardness. Finally, G-E-DS composite optimization was carried out by minimizing the wear VL. This resulted in an optimum DS reinforcement of 10% at a normal load of 10 N, an abrasive size of 1200 mesh, and an abrading distance of 420 m. Deviations from this reinforcement ratio degrade the mechanical properties of the G-E-DS composite. Moreover, the significant factors are the abrasive size, reinforcement material wt%, normal load, and abrading distance. The contributions of these factors are 30.6%, 15.5%, 11.8%, and 10%, respectively. FTIR results indicate that a chemical interaction has occurred between G-E and the organic DS. These experimental results are in good agreement with the theoretical ones.