Intimate Partner Violence (IPV) dramatically compromises the free and complete development of many women around the world, therefore leading to social asymmetry regarding the right to personal safety. In many cases, a woman who has reported her partner to police for gender-based violence needs to ensure her protection (either before the trial of the aggressor or after their freedom). Thus, it would be ideal if autonomous alarm systems could be developed in order to call the police if necessary. Up to now, many proposals have been presented in this regard, including solutions based on Information and Communication Technologies (ICT) but, unfortunately, these approaches usually rely on the active participation of the victims (survivors), who have to turn the system on by themselves if needed. Therefore, in order to overcome such limitations, in this work, a passive continuous monitoring system is proposed which uses biosensors attached to the survivor as well as machine learning techniques to infer if an abnormal situation related to gender-based violence is taking place, activating in this case an alarm. The monitoring structure of the system supervises a great deal of bio-signals according to the current status of technology of wearables and biomedical devices. The presented biosensors-based surveillance solution can also be manually disconnected for 30/60/90 min (on demand) in order to avoid false positives when a woman is, for example, practicing sports or carrying out other inoffensive activities that could incorrectly activate the alarm.