Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Flexible wearable devices designed to evaluate the biomechanical properties of deep tissues not only facilitate continuous and effective monitoring in basic performance but also exhibit significant potential in broader disease assessments. Recent advancements are highlighted in the structural and principled design of platforms capable of capturing various biomechanical signals. These advancements have led to enhanced testing capabilities concerning spatial scales and resolution modes at different depths. This review discusses the engineering of soft wearable devices for the biomechanical evaluation of deep tissue signals. It encompasses different measurement modes, device design and fabrication methods, integrated circuit (IC) integration schemes, and the characteristics of measurement depth and accuracy. The core discussion focuses on platform development, targeting different monitoring sites and platform structure design, ranging from linear strain gauges and conformal stretchable sensors to complex three-dimensional (3D) circuit-integrated stretchable arrays. We further explore various technologies associated with different measurement mechanisms and engineering designs, as well as the penetration depth and spatial resolution of these wearable sensors. The practical applications of these technologies are evident in the monitoring of deep tissue signals and changes in tissue characteristics. The results suggest that wearable biomechanical sensing systems hold substantial promise for applications in healthcare and research.
Flexible wearable devices designed to evaluate the biomechanical properties of deep tissues not only facilitate continuous and effective monitoring in basic performance but also exhibit significant potential in broader disease assessments. Recent advancements are highlighted in the structural and principled design of platforms capable of capturing various biomechanical signals. These advancements have led to enhanced testing capabilities concerning spatial scales and resolution modes at different depths. This review discusses the engineering of soft wearable devices for the biomechanical evaluation of deep tissue signals. It encompasses different measurement modes, device design and fabrication methods, integrated circuit (IC) integration schemes, and the characteristics of measurement depth and accuracy. The core discussion focuses on platform development, targeting different monitoring sites and platform structure design, ranging from linear strain gauges and conformal stretchable sensors to complex three-dimensional (3D) circuit-integrated stretchable arrays. We further explore various technologies associated with different measurement mechanisms and engineering designs, as well as the penetration depth and spatial resolution of these wearable sensors. The practical applications of these technologies are evident in the monitoring of deep tissue signals and changes in tissue characteristics. The results suggest that wearable biomechanical sensing systems hold substantial promise for applications in healthcare and research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.