2006
DOI: 10.1109/tkde.2006.34
|View full text |Cite
|
Sign up to set email alerts
|

WebGuard: a Web filtering engine combining textual, structural, and visual content-based analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
48
0
1

Year Published

2007
2007
2019
2019

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 98 publications
(49 citation statements)
references
References 15 publications
0
48
0
1
Order By: Relevance
“…The classification system of SafeSurf is more detailed. In order to describe harmfulness of web contents to each age group, it uses eleven categories [2], [8], [5], [10].…”
Section: Pics (Platform For Internet Content Selection)mentioning
confidence: 99%
“…The classification system of SafeSurf is more detailed. In order to describe harmfulness of web contents to each age group, it uses eleven categories [2], [8], [5], [10].…”
Section: Pics (Platform For Internet Content Selection)mentioning
confidence: 99%
“…At least, three categories of intelligent content Web filtering can be distinguished : (i) textual content Web filtering [1], (ii) structural content Web filtering [2], [3] and (iii) Visual content Web filtering [4]. Other Web filtering solutions are based on an analysis of textual, structural and visual contents, of a Web page [5].…”
Section: Web Filtering: Related Workmentioning
confidence: 99%
“…Zheng은 먼저 피부 색상 모델을 피부 영역을 추출하기 위해 서 적용했고, 추출된 피부 색상 영역에서 획득된 여러 가지 특 징들을 뉴럴 네트워크에 적용하여 유해 영상물을 검출하였다 [4]. Hammami는 피부 색상에 기반한 시각적인 분석을 이용해 성인 영상을 검출하는 Webguard 시스템을 개발하였다 [5]. 웹 페이지 내에 피부 색상 픽셀의 포함 정도를 나타내는 피부 색 상과 관련된 시각적인 특징들을 사용했다.…”
unclassified