Purpose
Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in GBM xenograft models alone and in combination with radiation and/or temozolomide (TMZ).
Experimental design
In vitro MK-1775 efficacy alone and in combination with TMZ, and the impact on DNA damage was analyzed by western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI) -MS imaging.
Results
GBM22 (IC50 = 68 nM) was significantly more sensitive to MK-1775 compared to 5 other GBM xenograft lines including GBM6 (IC50 >300 nM), and this was associated with a significant difference in pan-nuclear γH2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with TMZ in vitro. In an orthotopic GBM22 model, MK-1775 was ineffective when combined with TMZ, while in a flank model of GBM22, MK-1775 exhibited both single agent and combinatorial activity with TMZ. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared to heterotopic GBM22 tumors.
Conclusions
Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM.