The aim of this study was to assess the effects of bark stripping caused by sika deer (Cervus nippon [Temminck]) on the production and structure of young Norway spruce (Picea abies L. Karst) forest stands (41–43 years). Production parameters, structure, diversity, and the dynamics of radial growth in selected forest stands in relation to climatic conditions were evaluated. Similar to other production parameters, stand volumes showed lower values on research plots heavily damaged by bark stripping (290 m3 ha−1) compared to stands with lower tree stem damages (441 m3 ha−1). A significant decrease in stem volume was recorded for trees with stem circumference damage higher than 1/3 of the stem circumference. In most cases, the trees were damaged between the ages of 10–23 years, specifically the radial growth was significantly lowered in this period. The diameter increment of damaged trees dropped to 64% of the healthy counterparts in this period. Bark stripping damages reached up to 93% of the stem circumference with a mean damage of 31%. Stem rot was found on 62% of damaged trees. In our study area, with respect to the terms of climatic conditions, precipitation had a higher effect on radial growth of the Norway spruce compared to temperature. The main limiting climatic factor of tree growth was the lack of precipitation within a growing season, particularly in June of the current year.