Weighted automata model quantitative aspects of systems like memory or power consumption. Recently, Chatterjee, Doyen, and Henzinger introduced a new kind of weighted automata which compute objectives like the average cost or the long-time peak power consumption. In these automata, operations like average, limit superior, limit inferior, limit average, or discounting are used to assign values to finite or infinite words. In general, these weighted automata are not semiring weighted anymore. Here, we establish a connection between such new kinds of weighted automata and weighted logics. We show that suitable weighted MSO logics and these new weighted automata are expressively equivalent, both for finite and infinite words. The constructions employed are effective, leading to decidability results for the weighted logic formulas considered.