Tooth diseases including dental caries, periodontitis and cracks have been public health problems globally. How to detect them at the early stage and perform thorough diagnosis are critical for the treatment. The diseases can be viewed as defects from the perspective of non-destructive testing. Such a defect can affect the material properties (e.g., optical, chemical, mechanical, acoustic, density and dielectric properties). A non-destructive testing method is commonly developed to sense the change of one particular property. Microwave testing is one that is focused on the dielectric properties. In recent years, this technique has received increased attention in dentistry. Here, the dielectric properties of human teeth are presented first, and the measurement methods are addressed. Then, the research progress on the detection of teeth over the last decade is reviewed, identifying achievements and challenges. Finally, the research trends are outlined, including electromagnetic simulation, radio frequency identification and heating-based techniques.