Abstract:In the paper we obtain a precise characterization of Hardy type inequalities with weights for the negative indices and the indices between 0 and 1 and establish a duality between these cases.
“…Proposition 2.16 supplements the results of the Prokhorov recent paper [11], and Proposition 2.17 supplements the results of the papers [12], [13].…”
Abstract. Some Hardy-type integral inequalities in general measure spaces, where the corresponding Hardy operator is replaced by a more general Volterra type integral operator with kernel k(x, y), are considered. The equivalence of such inequalities on the cones of non-negative respective non-increasing functions are established and applied.
“…Proposition 2.16 supplements the results of the Prokhorov recent paper [11], and Proposition 2.17 supplements the results of the papers [12], [13].…”
Abstract. Some Hardy-type integral inequalities in general measure spaces, where the corresponding Hardy operator is replaced by a more general Volterra type integral operator with kernel k(x, y), are considered. The equivalence of such inequalities on the cones of non-negative respective non-increasing functions are established and applied.
“…D.V. Prokhorov in [53] gave the precise characterization of (0.7) for the same range of parameters p, q, as Beesack and Heinig. He also established a duality between the cases p, q < 0 and 0 < p, q < 1.…”
Section: Introductionmentioning
confidence: 94%
“…Theorem 2 [53]. Let −∞ < p, q < 0, 0 < C < +∞, k be a non-negative measurable function on (a, b) × (a, b) and…”
This Licentiate thesis deals with Hardy-type inequalities restricted to cones of monotone functions. The thesis consists of two papers (paper A and paper B) and an introduction which gives an overview to this specific field of functional analysis and also serves to put the papers into a more general frame. We deal with positive σ-finite Borel measures on R + := [0, ∞) and the class M ↓ (M ↑) consisting of all non-increasing (non-decreasing) Borel functions f : R + → [0, +∞]. In paper A some two-sided inequalities for Hardy operators on the cones of monotone functions are proved. The idea to study such equivalences follows from the Hardy inequality
Редукционные теоремы для весовых интегральных неравенств на конусе монотонных функций А. Гогатишвили, В. Д. Степанов В работе дается обзор результатов, связанных с редукцией интеграль-ных неравенств с положительными операторами в весовых пространствах Лебега на вещественной полуоси на конусе монотонных функций к некото-рым неравенствам на конусе неотрицательных функций, для доказатель-ства которых имеется больше возможностей. При этом случай монотон-ных операторов является новым. В качестве приложения для ряда опе-раторов Вольтерра получена полная характеризация при всех возможных параметрах суммирования.Библиография: 118 названий.Ключевые слова: весовое пространство Лебега, конус монотонных функций, весовое интегральное неравенство, принцип двойственности, ограниченные операторы, редукционная теорема.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.