2008
DOI: 10.1016/j.jmaa.2008.06.045
|View full text |Cite
|
Sign up to set email alerts
|

Weighted inequalities for negative powers of Schrödinger operators

Abstract: In this article we obtain boundedness of the operator (− + V ) −α/2 from L p,∞ (w) into weighted bounded mean oscillation type spaces BMO β L (w) under appropriate conditions on the weight w. We also show that these weighted spaces also have a point-wise description for 0 < β < 1. Finally, we study the behaviour of the operator (− + V ) −α/2 when acting on BMO β L (w).

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

3
65
0

Year Published

2012
2012
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 41 publications
(69 citation statements)
references
References 7 publications
3
65
0
Order By: Relevance
“…In the Schrödinger case the analogous result was proved by B. Bongioanni, E. Harboure and O. Salinas in [6]. They identified the Hölder space associated to L with a Campanato type BM O α L space, see Proposition 2.4 below.…”
Section: Introduction and Statement Of The Resultssupporting
confidence: 55%
See 3 more Smart Citations
“…In the Schrödinger case the analogous result was proved by B. Bongioanni, E. Harboure and O. Salinas in [6]. They identified the Hölder space associated to L with a Campanato type BM O α L space, see Proposition 2.4 below.…”
Section: Introduction and Statement Of The Resultssupporting
confidence: 55%
“…They also studied the corresponding boundedness results for the negative powers, see [6], and L p -boundedness for the commutators with a function, see [4]. Following the pattern of the proof of Theorem 1.3 we can recover the results from [6] and [5]. We state them as a theorem for further reference.…”
Section: Introduction and Statement Of The Resultsmentioning
confidence: 88%
See 2 more Smart Citations
“…To this end, in Section 4, we prove a Fefferman-Stein type inequality that takes into account the structure of the appropriate version of BMO space introduced in [2,8].…”
mentioning
confidence: 99%