2022
DOI: 10.37236/10740
|View full text |Cite
|
Sign up to set email alerts
|

Weighted Modulo Orientations of Graphs and Signed Graphs

Abstract: Given a graph $G$ and an odd prime $p$, for a mapping $f: E(G) \to {\mathbb Z}_p\setminus\{0\}$ and a ${\mathbb Z}_p$-boundary $b$ of $G$, an orientation $\tau$ is called an $(f,b;p)$-orientation if the net out $f$-flow is the same as $b(v)$ in ${\mathbb Z}_p$ at each vertex $v\in V(G)$ under orientation $D$. This concept was introduced by Esperet et al. (2018), generalizing mod $p$-orientations and closely related to Tutte's nowhere zero 3-flow conjecture. They proved that $(6p^2 - 14p + 8)$-edge-connected gr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?