2012
DOI: 10.1103/physreve.85.041925
|View full text |Cite
|
Sign up to set email alerts
|

Weighted patterns as a tool for improving the Hopfield model

Abstract: We generalize the standard Hopfield model to the case when a weight is assigned to each input pattern. The weight can be interpreted as the frequency of the pattern occurrence at the input of the network. In the framework of the statistical physics approach we obtain the saddle-point equation allowing us to examine the memory of the network. In the case of unequal weights our model does not lead to the catastrophic destruction of the memory due to its overfilling (that is typical for the standard Hopfield mode… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
15
0
2

Year Published

2012
2012
2021
2021

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 17 publications
(17 citation statements)
references
References 13 publications
0
15
0
2
Order By: Relevance
“…Статфизические подходы широко используются для описания нейронных сетей большого размера [1][2][3][4]. В частности, наиболее продвинутые нейросетевые алгоритмы глубокого обучения и обработки изображений [5,6] основаны на оптимизации свободной энергии системы спинов-нейронов, т. е. на оптимизации распределения энергий.…”
Section: физикаunclassified
“…Статфизические подходы широко используются для описания нейронных сетей большого размера [1][2][3][4]. В частности, наиболее продвинутые нейросетевые алгоритмы глубокого обучения и обработки изображений [5,6] основаны на оптимизации свободной энергии системы спинов-нейронов, т. е. на оптимизации распределения энергий.…”
Section: физикаunclassified
“…For that, we express the matrix T in the form Taking into account Eqs. (17)(18)(19) we present the quasienergy in the configuration 0 S in the form…”
Section: Quasienergy Distribution In Minimummentioning
confidence: 99%
“… (23). states that at different instants of time the magnetization obtained in the framework of simulations takes on any value between 0…”
mentioning
confidence: 99%
“…Instead we see that the heat capacity in the critical point increases logarithmically, that is N . However, it is difficult to realize this transition since if we increase the size of the lattice even up to the Avogadro number dependence of the heat capacity on N means violation of the additivity concept for a classical system that is clearly seen even when23 : if we double the size of the system the value of c C is up by 1.3%. Of course, we examined the system with the free boundary conditions and such systems are non-additive by definition.…”
mentioning
confidence: 99%