In economic development, in addition to comparing the gross domestic product (GDP) between nations, it is critical to assess the quality of life to gain a holistic perspective of their different aspects. However, the quality of life index (QOLI) is a subjective term that can be difficult to quantify. Although this composite index is typically calculated using universal weights proposed by experts to aggregate indicators, such as safety indexes, healthcare indexes, pollution indexes, and housing indicators, it is complicated to balance multiple dimensions whose weights are adjusted to account for different countries’ circumstances. Therefore, this paper aims to construct various scenarios of the QOLI, using linguistic quantifiers of the ordered weighted averaging (OWA) operator, and the 2-tuple linguistic model. Numbeo, one of the largest quality of life information databases, was used in this paper to estimate the QOLI in 85 countries. Uncertainty and sensitivity analyses were employed to assess the robustness of the QOLI. The results of the proposed model are compared with those obtained using the Numbeo formulation. The results show that the proposed model increases the linguistic interpretability of the QOLI, and obtains different QOLIs, based on diverse country contexts.