2008
DOI: 10.5269/bspm.v26i1-2.7415
|View full text |Cite
|
Sign up to set email alerts
|

Weighted Sobolev Spaces and Degenerate Elliptic Equations

Abstract: In this paper, we survey a number of recent results obtained in the study of weighted Sobolev spaces (with power-type weights, Ap-weights, padmissible weights, regular weights and the conjecture of De Giorgi) and the existence of entropy solutions for degenerate quasilinear elliptic equations.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
21
0

Year Published

2013
2013
2025
2025

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 24 publications
(21 citation statements)
references
References 18 publications
0
21
0
Order By: Relevance
“…can prove as in[3, Lemma 15] that lim ε→0 sup s∈[0,t]|ε 2 A ω s/ε 2 − sE µ [θ]| = 0, P ω x -a.s, a.a. x ∈ R d ,(5 5). …”
mentioning
confidence: 99%
“…can prove as in[3, Lemma 15] that lim ε→0 sup s∈[0,t]|ε 2 A ω s/ε 2 − sE µ [θ]| = 0, P ω x -a.s, a.a. x ∈ R d ,(5 5). …”
mentioning
confidence: 99%
“…Let us begin with the definition of the following weighted Sobolev space. Definition (see ). Let k 1 ( k N ) and 1 p < + .…”
Section: Introduction Preliminaries and Statement Of Resultsmentioning
confidence: 99%
“…In recent years, there are increasing interests to the models with degenerate variable. For equation (1) with degeneracy, the existence and uniqueness of solutions have been studied extensively, see for example, [3,6,15,16] for the elliptic case and [8,16,22] for the parabolic problem.…”
Section: Xin LI Chunyou Sun and Na Zhangmentioning
confidence: 99%