Several studies have showed the subsistence, even in students enrolled in scientific degree courses, of spontaneous ideas regarding the motion of bodies that conflict with Newton’s laws. One of the causes is related to the intuitive preconceptions that students have about the role of friction as a force. In fact, in real world novices do not recognise friction as a force, and for this reason they may believe that a motion with a constant speed needs as a necessary condition the presence of a constant force in the same direction of the motion.
In order to face these ‘intuitive ways of reasoning’, in this paper we propose two sequential experiments that can allow undergraduate students to clarify the role of friction forces through the use of the work–energy theorem. This is a necessary first step on the way to a deeper understanding of Newton’s second law.
We have planned our experiments in order to strongly reduce quantitative difficult calculations and to facilitate qualitative comprehension of observed phenomena. Moreover, the proposed activities represent two examples of the recurring methodology used in experimental practices, since they offer the possibility to measure very small physical quantities in an indirect way with a higher accuracy than the direct measurements of the same quantities.