A cobalt-catalyzed
intermolecular three-component coupling of arenes,
ethylene, and alkynes was developed using the well-defined air-stable
cationic bis(phosphine) cobalt(I) complex, [(dcype)Co(η6-C7H8)][BArF
4]
(dcype = 1,2-bis(dicyclohexylphosphino)ethane; BArF
4 = B[(3,5-(CF3)2)C6H3]4), as the precatalyst. All three components were
required for turnover and formation of ortho-homoallylated
arene products. A range of directing groups including amide, ketone,
and 2-pyridyl substituents on the arene promoted the reaction. The
cobalt-catalyzed method exhibited broad functional group tolerance
allowing for the late-stage functionalization of two drug molecules,
fenofibrate and haloperidol. A series of control reactions, deuterium
labeling studies, resting state analysis, as well as synthesis of
substrate- and product-bound η6-arene complexes supported
a pathway involving C(sp
2
)–H activation from a cobalt(III) metallacycle.