Although thermal heavy oil recovery methods are extensively used, no unified and standardized basis exists for selecting materials and configuring intermediate (production) casing/connection systems for these extreme-service applications. Thermal intermediate casing systems must accommodate a wide variety of mechanical and environmental loads sustained during well construction, thermal service at temperatures exceeding 200°C, and well abandonment. Numerous operator- and field-specific designs have been used with good success and only a few isolated challenges, but industry's use of its operating experience to calibrate tubular design bases for future wells has been limited.
This paper identifies the benefits and components of a unified casing system design basis for thermal wells, aimed to be technically comprehensive, inclusive of the available elements of industry's collective knowledge and experience, and adaptable to technological advancements. The technical element of the unified basis broadly relates to the engineering foundation used to make three primary design selections: material, pipe body, and connections. For each design selection, the paper provides an overview of the associated technological challenges and the current state of the industry in addressing those challenges, including the commonly-adopted design approaches. Key performance considerations include integrity during well construction, connection thermal service structural integrity, pipe thermal service integrity and deformation tolerance, connection sealability, and casing system environmental cracking resistance. Where applicable, the paper identifies interdependencies that exist between design selections (for instance, the impact of pipe material selection on the thermally-induced axial load that must be borne by the tubular and connection), and discusses mechanisms for accounting for those added complexities in the design.
Ultimately, the intent of this paper is to provide a framework for referencing existing technical knowledge and for considering further development and field benchmarking work that will reduce the technological uncertainty and increase simplicity in thermal casing system designs. Industry will benefit from a unified engineering approach that offers operators sufficient flexibility to accommodate application requirements and prior experience.