A very simple polydimethylsiloxane (PDMS) pattern‐transfer method is devised, called buffered‐oxide etchant (BOE) printing. The mechanism of pattern transfer is investigated, by considering the strong adhesion between the BOE‐treated PDMS and the SiO2 substrate. PDMS patterns from a few micrometers to sub‐micrometer size are transferred to the SiO2 substrate by just pressing a stamp that has been immersed in BOE solution for a few minutes. The patterned PDMS layers work as perfect physical and chemical passivation layers in the fabrication of metal electrodes and V2O5 nanowire channels, respectively. Interestingly, a second stamping of the BOE‐treated PDMS on the SiO2 substrate pre‐patterned with metal as well as PDMS results in a selective transfer of the PDMS patterns only to the bare SiO2. In this way, the fabrication of a device structure consisting of two Au electrodes and V2O5 nanowire network channels is possible; non‐ohmic semiconducting I–V characteristics, which can be modeled by serially connected percolation, are observed.