2023
DOI: 10.1007/s40065-023-00431-2
|View full text |Cite
|
Sign up to set email alerts
|

Well-posedness and decay in a system of hyperbolic and biharmonic-wave equations with variable exponents and weak dampings

Abstract: In this paper, we consider a coupled system of hyperbolic and biharmonic-wave equations with variable exponents in the damping and coupling terms. In each equation, the damping term is modulated by a time-dependent coefficient a(t) (or b(t)). First, we state and prove a well-posedness theorem of global weak solutions, by exploiting Galerkin’s method and some compactness arguments. Then, using the multiplier method, we establish the decay rates of the solution energy, under suitable assumptions on the time-depe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?