A differential equation-based framework is suitable for the modeling of nonequilibrium complex systems if its solution is able to reach, as time goes to infinity, the related nonequilibrium steady states. The thermostatted kinetic theory framework has been recently proposed for the modeling of complex systems subjected to an external force field. The present paper is devoted to the mathematical proof of the convergence of the solutions of the thermostatted kinetic framework towards the related nonequilibrium stationary states. The proof of the main result is gained by employing the Fourier transform and distribution theory arguments.