2022
DOI: 10.3934/dcdsb.2021205
|View full text |Cite
|
Sign up to set email alerts
|

Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation

Abstract: <p style='text-indent:20px;'>The main purpose of this paper is to study local regularity properties of the fourth-order nonlinear Schrödinger equations on the half line. We prove the local existence, uniqueness, and continuous dependence on initial data in low regularity Sobolev spaces. We also obtain the nonlinear smoothing property: the nonlinear part of the solution on the half line is smoother than the initial data.</p>

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 30 publications
0
0
0
Order By: Relevance