We consider the equations for time dependent creeping flow of an upper convected Maxwell fluid. For finite Weissenberg number, these equations can be reformulated as a coupled system of a hyperbolic equation for the stresses and an elliptic equation for the velocity. In the high Weissenberg number limit, however, the elliptic equation becomes degenerate. As a consequence, the initial value problem is no longer uniquely solvable if we just naively let the Weissenberg number go to infinity in the equations. In this paper, we make an a priori assumption on the stresses, which is motivated by the behavior in shear flow. We formulate a systematic perturbation procedure to solve the resulting initial value problem. Copyright © 2014 JohnWiley & Sons, Ltd.