Dissolvable materials are enabling a revolution in the completion and stimulation of wellbores. Effective design of dissolvable fracturing tools, however, needs to account for the substantial cooling effect that arises during pump down and stimulation. The degradation process, degradation time, and material properties change because of the wellbore cool down. A well bore cools when fluids are injected into the formation. Temperature profiles are measured with fibre-optic cable and are simulated with numerical models. Both measured and modelled results show that down hole temperatures can be cooled to near surface temperatures. This temperature data is combined with experimental dissolution behavior to show that different dissolution behaviour occurs during pump down, setting, wellbore stimulation, and wellbore temperature recovery.