Hybrid sheet metal composites do show advantages compared to monolithic materials when strength, stiffness, and damping characteristics are set to a global optimum. Even though the mechanical properties of hybrid sheet metal composites have been improved in recent years, the application of such hybrid materials in the automotive industry is not well-established due to insufficient knowledge about their forming characteristics (e.g. in deep drawing process). Stiffness increasing composites consist of two metal sheets and a viscoelastic damping layer in-between: the outer sheet reveals stamped beads which increases stiffness of composite while the inner sheet serves as cover sheet. This paper deals with challenges of formability of stiffness increasing composites in industrial deep-drawing processes. The main concern is dimensional stability and accuracy of those layered materials after finishing the forming process. In order to ensure accuracy of formed parts, a methodology was developed for increased quality of sheet metal composites. Depending on the drawing limit ratios and blankholder forces, which evaluate the drawability of component in general, the drawing limit ratio is influenced for profound or insufficient residual bead heights and widths. Besides insufficient bead height, which causes a reduction in moment of inertia, inner marks on the visible outer sheet hamper a broad application in practical use. Finally, paper provides detailed recipies for manufacturing and tool layout for deep drawing objectives of such composite material.