Dicalcium phosphate anhydrous (DCPA) presents good biomineralization ability, the strontium element is known for superior bone affinity, and a whisker possesses good mechanical strength; all these are beneficial for improving the drawbacks of hydroxyapatite (HAP) like weaker mechanical properties, poor biomineralization, and slower degradation/absorption. Therefore, a homogeneous precipitation was adopted to synthesize Sr-substituted and DCPA and HAP coexisting whiskers. The composition, structure, and morphology based on urea dosage and substitution content were characterized, and the roles of DCPA, Sr, and whisker shape were investigated. It turned out that Sr-DCPA/HAP biphasic products contained about 19% DCPA and 81% HAP, and both phases occupied the outer and inner parts of the whisker, respectively. Increasing the urea dosage made the morphology transform from a sea urchin shape to fiber clusters and then whiskers, while Sr substitution brought the whisker back to the porous microsphere shape. Only 5% of Sr content and 15 g of urea could maintain the whisker shape. Sr could promote the proliferation of MC3T3-E1 cells even at a higher extract concentration of 10 mg/mL. The cells stayed in a healthy state whether cocultured with the whisker or the microsphere. The unstable DCPA combined with the decreased crystallinity brought by Sr doping contributed to shortening the apatite deposition period to within 7 days. The whisker morphology enhanced the compressive strength of acrylic resin, and the apatite layer helped to reduce the strength loss during soaking. The Sr-DCPA/HAP biphasic whisker with enhanced overall properties possessed more promising potential for biomedical application.