Steady consumption of beer results in a steady output of residues, i.e., brewer's spent grain (BSG). Its valorization, using hydrothermal carbonization (HTC) seems sensible. However, a significant knowledge gap regarding the variability of this residue and its influence on the valorization process and its potential use in biorefineries exists. This study attempted to fill this gap by characterization of BSG in conjunction with the main product (beer), taking into accounts details of the brewing process. Moreover, different methods to assess the performance of HTC were investigated. Overall, the differences in terms of the fuel properties of both types of spent grain were much less stark, in comparison to the differences between the respective beers. The use of HTC as a pretreatment of BSG for subsequent use as a biorefinery feedstock can be considered beneficial. HTC was helpful in uniformization and improvement of the fuel properties. A significant decrease in the oxygen content and O/C ratio and improved grindability was achieved. The Weber method proved to be feasible for HTC productivity assessment for commercial installations, giving satisfactory results for most of the cases, contrary to traditional ash tracer method, which resulted in significant overestimations of the mass yield.However, for craft breweries located in big cities, disposal becomes more problematic [3]. There are also attempts to enrich food products with spent grains. Thus far, there have been trials with sausages [4] and bread [5]. However, consumers reported that such products represent a fiber aftertaste [6]. However, this is limited only to the relatively close vicinity of a brewery, due to relatively high moisture content, that could range between 70% up to 78% 70% [7][8][9]. Biological activity of these residues makes long term storage difficult. The literature reports ongoing work on various new ways of using BSG, including extraction of polyphenols [10,11], other anti-oxidants [12,13], functional cardioprotective lipids for pharmaceutic use [14], proteins [15], fodder for edible insects [16], material for disposable trays [17], natural rubber modifier [18], as well as feedstock for production of pigments [19] and biochar, for subsequent use as soil amendment [20] or sustainable material for electrodes [21].The potential use of this residue as a fuel has been suggested by several authors so far [7][8][9]22,23]. The relatively high initial moisture content of spent grain makes hydrothermal valorization techniques the most sensible choice [8,9]. Hydrothermal carbonization (HTC), also known as wet torrefaction, is a valorization process suitable for a range of low-quality solid biomass, especially with high initial moisture content [24,25]. Process temperature, reported in the literature, usually ranges between 180 • C and 260 • C [25][26][27][28][29][30]. As the process takes place in subcritical water, pressure has to be higher than saturation pressure of water for specific temperature [25][26][27][28][29][30]. In these conditions wa...