Current biomechanical models suggest that butterflies and moths use their proboscis as a drinking straw pulling nectar as a continuous liquid column. Our analyses revealed an alternative mode for fluid uptake: drinking bubble trains that help defeat drag. We combined X-ray phase-contrast imaging, optical video microscopy, micro-computed tomography, phylogenetic models of evolution and fluid mechanics models of bubble-train formation to understand the biomechanics of butterfly and moth feeding. Our models suggest that the bubble-train mechanism appeared in the early evolution of butterflies and moths with a proboscis long enough to coil. We propose that, in addition to the ability to drink a continuous column of fluid from pools, the ability to exploit fluid films by capitalizing on bubble trains would have expanded the range of available food sources, facilitating diversification of Lepidoptera.