2020
DOI: 10.1007/s00031-020-09559-3
|View full text |Cite
|
Sign up to set email alerts
|

Weyl’s Polarization Theorem in Positive Characteristic

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 44 publications
0
3
0
1
Order By: Relevance
“…Theorem 25 (Weyl's Polarization Theorem -weak form [5]). Assume that the characteristic of the ground field is zero and let m = dim W .…”
Section: Bound Transference and Weyl's Polarization Theoremmentioning
confidence: 99%
See 1 more Smart Citation
“…Theorem 25 (Weyl's Polarization Theorem -weak form [5]). Assume that the characteristic of the ground field is zero and let m = dim W .…”
Section: Bound Transference and Weyl's Polarization Theoremmentioning
confidence: 99%
“…We establish the theorem by considering a subspace arrangement of cardinality t = |G| associated to the group G. The regularity bound on the ideal of the subspace arrangement in the exterior algebra from [11] gives us the degree bound on a minimal set of generating invariants. The idea of using polynomial functors to establish results in invariant theory goes back to the times of Weyl and it continues nowadays in our work, the work of Derksen and Makam [5], and the work of Snowden [24].…”
Section: Introductionmentioning
confidence: 99%
“…Given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal call the restitution. In addition to being essential in invariant theory, e.g., Weyl's polarization theorem [8,36], the notion has applications in other areas of mathematics, including algebraic geometry, Lie algebras and representation theory. See Section 5 for a brief summary.…”
Section: Introductionmentioning
confidence: 99%
“…Um outro problema oriundo da finitude de certos conjuntos geradores (ou separadores, respectivamente) de uma álgebra de invariantes F[H] G consiste em obter limitações, ou o valor exato quando possível, para o menor inteiro D tal que o conjunto de todos os invariantes homogêneos de F[H] G com grau ≤ D é um conjunto gerador (conjunto separador, respectivamente), o qual é denotado por β(F[H] G ) (β sep (F[H] G ), respectivamente). Este problema foi vastamente estudado e existem diversos resultados nessa linha obtidos para álgebras específicas, como exemplos indicamos os resultados apresentados em [10], [19], [21], [22] e [12].…”
Section: Introducãounclassified