In recent years, various classes of systems were proposed to realize topological states of matter. One of them are multiterminal Josephson junctions where topological Andreev bound states are constructed in the synthetic space of superconducting phases. Crucially, the topology in these systems results in a quantized transconductance between two of its terminals comparable to the quantum Hall effect. In this work, we study a double quantum dot with four superconducting terminals and show that it has an experimentally accessible topological regime in which the non-trivial topology can be measured. We also include Coulomb repulsion between electrons which is usually present in experiments and show how the topological region can be maximized in parameter space.