Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The International Nuclear Workers Study (INWORKS) contributes knowledge on the dose-response association between predominantly low dose, low dose rate occupational exposures to penetrating forms of ionizing radiation and cause-specific mortality. By extending follow-up of 309,932 radiation workers from France (1968–2014), the United Kingdom (1955–2012), and the United States (1944–2016) we increased support for analyses of temporal variation in radiation-cancer mortality associations. Here, we examine whether age at exposure, time since exposure, or attained age separately modify associations between radiation and mortality from all solid cancers, solid cancers excluding lung cancer, lung cancer, and lymphohematopoietic cancers. Multivariable Poisson regression was used to fit general relative rate models that describe modification of the linear excess relative rate per unit organ absorbed dose. Given indication of greater risk per unit dose for solid cancer mortality among workers hired in more recent calendar years, sensitivity analyses considering the impact of year of hire on results were performed. Findings were reasonably compatible with those from previous pooled and country-specific analyses within INWORKS showing temporal patterns of effect measure modification that varied among cancers, with evidence of persistent radiation-associated excess cancer risk decades after exposure, although statistically significant temporal modification of the radiation effect was not observed. Analyses stratified by hire period (< 1958, 1958+) showed temporal patterns that varied; however, these analyses did not suggest that this was due to differences in distribution of these effect measure modifiers by hire year.
The International Nuclear Workers Study (INWORKS) contributes knowledge on the dose-response association between predominantly low dose, low dose rate occupational exposures to penetrating forms of ionizing radiation and cause-specific mortality. By extending follow-up of 309,932 radiation workers from France (1968–2014), the United Kingdom (1955–2012), and the United States (1944–2016) we increased support for analyses of temporal variation in radiation-cancer mortality associations. Here, we examine whether age at exposure, time since exposure, or attained age separately modify associations between radiation and mortality from all solid cancers, solid cancers excluding lung cancer, lung cancer, and lymphohematopoietic cancers. Multivariable Poisson regression was used to fit general relative rate models that describe modification of the linear excess relative rate per unit organ absorbed dose. Given indication of greater risk per unit dose for solid cancer mortality among workers hired in more recent calendar years, sensitivity analyses considering the impact of year of hire on results were performed. Findings were reasonably compatible with those from previous pooled and country-specific analyses within INWORKS showing temporal patterns of effect measure modification that varied among cancers, with evidence of persistent radiation-associated excess cancer risk decades after exposure, although statistically significant temporal modification of the radiation effect was not observed. Analyses stratified by hire period (< 1958, 1958+) showed temporal patterns that varied; however, these analyses did not suggest that this was due to differences in distribution of these effect measure modifiers by hire year.
The term ‘low dose’ is applied to different levels of dose depending on the circumstances of exposure, with the potential for confusion unless the reasoning is clear. The United Nations Scientific Committee on the Effects of Ionising Radiation has defined low absorbed doses of ionising radiation as below about 100 mGy, and low dose rates as below 0.1 mGy min-1 (6 mGy h-1). These values relate to the interpretation of scientific evidence from epidemiological and biological studies. The International Commission on Radiological Protection has used similar values of 100 mSv and 5 mSv h-1 and applied this categorisation directly to the specific situation of patients undergoing diagnostic procedures: doses below 100 mSv were referred to as ‘low’ and doses below 10 mSv as ‘very low’. Consideration of other exposure situations suggest that the same terms can be used for exposures received by emergency workers. However, for workers and members of the public in planned exposure situations, it is suggested that the term ‘low dose’ applies to doses below 10 mSv and 1 mSv, respectively – that is, below the dose limits. In each case, dose is being used as a surrogate for risk – risks at low doses are uncertain and estimates may change, but order of magnitude considerations are sufficient in most cases. Doses of < 100 mSv, < 10 mSv and < 1 mSv correspond to life-time cancer risk estimates of the order of < 10-2, < 10-3 and < 10-4, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.