Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Necrotizing enterocolitis (NEC) is an often-lethal disease of the premature infant intestinal tract, exacerbated by significant diagnostic difficulties. In NEC, the intestine exhibits hypoperfusion and dysmotility, contributing to disease pathogenesis. However, these features cannot be accurately and quantitively assessed with current imaging modalities. We have previously demonstrated the ability of photoacoustic imaging (PAI) to non-invasively assess intestinal tissue oxygenation and motility in a healthy neonatal rat model. Methods In this first-in-disease application, we evaluated NEC using PAI to assess intestinal health biomarkers in an experimental model of NEC. NEC was induced in neonatal rats from birth to 4-days. Healthy breastfed (BF) and NEC rat pups were imaged at 2- and 4-days. Results Intestinal tissue oxygen saturation was measured with PAI, and NEC pups showed significant decreases at 2- and 4-days. Ultrasound and PAI cine recordings were used to capture intestinal peristalsis and contrast agent transit within the intestine. Intestinal motility, assessed using computational intestinal deformation analysis, demonstrated significant reductions in both early and established NEC. NEC damage was confirmed with histology and dysmotility was confirmed by small intestinal transit assay. Conclusion This preclinical study presents PAI as an emerging diagnostic imaging modality for intestinal disease assessment in premature infants. Impact Necrotizing enterocolitis (NEC) is a devastating intestinal disease affecting premature infants with significant mortality. NEC presents significant clinical diagnostic difficulties, with limited diagnostic confidence complicating timely and effective interventional efforts. This study is an important foundational first-in-disease preclinical study that establishes the utility for PAI to detect changes in intestinal tissue oxygenation and intestinal motility with NEC disease induction and progression. This study demonstrates the feasibility and exceptional promise for the use of PAI to non-invasively assess oxygenation and motility in the healthy and diseased infant intestine.
Background Necrotizing enterocolitis (NEC) is an often-lethal disease of the premature infant intestinal tract, exacerbated by significant diagnostic difficulties. In NEC, the intestine exhibits hypoperfusion and dysmotility, contributing to disease pathogenesis. However, these features cannot be accurately and quantitively assessed with current imaging modalities. We have previously demonstrated the ability of photoacoustic imaging (PAI) to non-invasively assess intestinal tissue oxygenation and motility in a healthy neonatal rat model. Methods In this first-in-disease application, we evaluated NEC using PAI to assess intestinal health biomarkers in an experimental model of NEC. NEC was induced in neonatal rats from birth to 4-days. Healthy breastfed (BF) and NEC rat pups were imaged at 2- and 4-days. Results Intestinal tissue oxygen saturation was measured with PAI, and NEC pups showed significant decreases at 2- and 4-days. Ultrasound and PAI cine recordings were used to capture intestinal peristalsis and contrast agent transit within the intestine. Intestinal motility, assessed using computational intestinal deformation analysis, demonstrated significant reductions in both early and established NEC. NEC damage was confirmed with histology and dysmotility was confirmed by small intestinal transit assay. Conclusion This preclinical study presents PAI as an emerging diagnostic imaging modality for intestinal disease assessment in premature infants. Impact Necrotizing enterocolitis (NEC) is a devastating intestinal disease affecting premature infants with significant mortality. NEC presents significant clinical diagnostic difficulties, with limited diagnostic confidence complicating timely and effective interventional efforts. This study is an important foundational first-in-disease preclinical study that establishes the utility for PAI to detect changes in intestinal tissue oxygenation and intestinal motility with NEC disease induction and progression. This study demonstrates the feasibility and exceptional promise for the use of PAI to non-invasively assess oxygenation and motility in the healthy and diseased infant intestine.
Background: Necrotizing enterocolitis (NEC) is an often-lethal disease of the premature infants' intestinal tract that is exacerbated by significant difficulties in early and accurate diagnosis. In NEC disease, the intestine often exhibits hypoperfusion and dysmotility, which contributes to advanced disease pathogenesis. However, these physiological features cannot be accurately and quantitively assessed within the current constraints of imaging modalities frequently used in the clinic (plain film X-ray and ultrasound). We have previously demonstrated the ability of photoacoustic imaging (PAI) to non-invasively and quantitively assess intestinal tissue oxygenation and motility in a healthy neonatal rat model. As a first-in-disease application, we evaluated NEC pathogenesis using PAI to assess intestinal health biomarkers in a preclinical neonatal rat experimental model of NEC. Methods: NEC was induced in neonatal rat pups from birth to 4 days old via hypertonic formula feeding, full-body hypoxic stress, and lipopolysaccharide administration to mimic bacterial colonization. Healthy breastfed (BF) controls and NEC rat pups were imaged at 2- and 4-days old. Intestinal tissue oxygen saturation was measured with PAI imaging for oxy- and deoxyhemoglobin levels. To measure intestinal motility, ultrasound and co-registered PAI cine recordings were used to capture intestinal peristalsis motion and contrast agent (indocyanine green) transit within the intestinal lumen. Additionally, both midplane two-dimensional and volumetric three-dimensional imaging acquisitions were assessed for oxygenation and motility. Results: NEC pups showed a significant decrease of intestinal tissue oxygenation as compared to healthy BF controls at both ages (2-days old: 55.90% +/- 3.77% vs 44.12% +/- 7.18%; 4-days old: 56.13% +/- 3.52% vs 38.86% +/- 8.33%). Intestinal motility, assessed using a computational intestinal deformation analysis, demonstrated a significant reduction in the intestinal motility index in both early (2-day) and established (4-day) NEC. Extensive NEC damage was confirmed with histology and dysmotility was confirmed by small intestinal transit assay. Conclusions: This study presents PAI as a successful emerging diagnostic imaging modality for both intestinal tissue oxygenation and intestinal motility disease hallmarks in a rat NEC model. PAI presents enormous significance and potential for fundamentally changing current clinical paradigms for detecting and monitoring intestinal pathologies in the premature infant.
When a puppy or kitten is born prematurely, it is fragile and highly susceptible to hypothermia, hypoglycaemia and infections. Their organs are often underdeveloped, and most require human intervention to survive. Each day of prematurity in a kitten or puppy is equivalent to one week of prematurity in a human. Premature neonates often cannot nurse adequately, leading to a rapid decline in their condition. Following pre-term labour, dams are often less attentive and may experience little to no lactation. In some cases, neonates may be full-term but underdeveloped as a result of maternal factors that have stunted fetal growth. This article outlines methods for identifying and distinguishing these cases, while emphasising the importance of veterinary professionals recognising and adopting the most appropriate care procedures to improve the survival chances of the neonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.