Extensive osseous adaptations of the lumbar spine, pelvis, hip and femur characterize the emergence of the human bipedal gait with its ‘double extension’ of the lumbar spine and hip. To accommodate lumbar lordosis, the pelvis was ‘compacted’, becoming wider and shorter, as compared with the non-human apes. The hip joint acquired a much more extended position, which can be seen in a broader evolutionary context of verticalization of limbs. When loaded in a predominantly vertical position, the femur can be built lighter and longer than when it is loaded more horizontally because bending moments are smaller. Extension of the hip joint together with elongation of the femur increases effective leg length, and hence stride length, which improves energy efficiency. At the hip joint itself, the shift of the hip’s default working range to a more extended position influences concavity at the head–neck junction and femoral neck anteversion.