The NLRP3 inflammasome is a multiprotein complex that is a component of the innate immune system, involved in the production of proinflammatory cytokines. Its abnormal activation is associated with many inflammatory diseases. In this study, we designed and synthesized a series of NLRP3 inflammasome inhibitors based on pyridazine scaffolds. Among them, P33 exhibited significant inhibitory effects against nigericin-induced IL-1β release in THP-1 cells, BMDMs, and PBMCs, with IC 50 values of 2.7, 15.3, and 2.9 nM, respectively. Mechanism studies indicated that P33 directly binds to NLRP3 protein (K D = 17.5 nM), inhibiting NLRP3 inflammasome activation and pyroptosis by suppressing ASC oligomerization during NLRP3 assembly. Additionally, P33 displayed excellent pharmacokinetic properties, with an oral bioavailability of 62%. In vivo efficacy studies revealed that P33 significantly ameliorated LPS-induced septic shock and MSU crystal-induced peritonitis in mice. These results indicate that P33 has great potential for further development as a candidate for treating NLRP3 inflammasome-mediated diseases.