Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods:We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths.Results: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/ kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0-15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0-15 cm). At lower depths, only IT SOC compared with HT at 15-30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions:The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0-30 cm) around 4.6 Mg/ha (0.78-8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods:We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths.Results: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/ kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0-15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0-15 cm). At lower depths, only IT SOC compared with HT at 15-30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions:The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0-30 cm) around 4.6 Mg/ha (0.78-8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
The persistence of soil organic carbon (SOC) has traditionally been explained as a combination of recalcitrance properties and stabilization processes, which lead to the formation of complex organic compounds. However, recent conceptual advances and experimental evidence challenge this view. Here, we test these conceptual advances using a dynamic equilibrium theory of SOC founded on classic ecological theory. We postulate that the persistence of SOC is an equilibrium point where SOC losses resulting from continuous decomposition and SOC gains due to SOC protection are balanced. We show that we can describe the temporal dynamics of SOC remarkably well (average and median R 2 = 0.75) in publicly available SOC time series from experiments that investigated the effects of agricultural practices in arable soils. The predictive power of our simplistic model is not meant to compete with that of current multi‐pool SOC models or recent developments that include microbial loops. The simplicity of our analysis can, however, show how the conceptual distinction between the forces that control SOC loss and gain, and their equilibrium, can shed light on SOC dynamics. Specifically, our analysis shows that, regardless of specific mechanisms, the persistence of SOC will depend on the ultimate equilibrium between SOC gains and losses, which may depend on environmental (e.g. temperature) and ecological (e.g. spatially structured microbial activities) factors and the relative roles of these factors. Future experimental studies should quantify these roles to formulate a new generation of SOC dynamics model.
Background Soil organic matter (SOM) is important for soil fertility and climate change mitigation. Agricultural management can improve soil fertility and contribute to climate change mitigation by stabilising carbon in soils. This calls for cost‐effective parameters to assess the influence of management practices on SOM contents. Aims The current study aimed at understanding how sensitively the parameters active carbon (AC) and nitrogen mineralisation potential (NMP) react to different agricultural management practices compared to total organic carbon (TOC) and total nitrogen (Nt). We aimed to gain a better understanding of SOM processes, mainly regarding depth distribution and seasonality of SOM dynamics using AC and NMP. Methods We looked mainly at four parameters, namely permanganate oxidisable carbon (AC), nitrogen minerlaisation potential (NMP), total organic carbon (TOC) and total nitrogen (Nt). Data were obtained in five long‐term field experiments (LTEs) testing four management practices: (1) tillage, (2) compost application, (3) crop residue management, and (4) mineral fertilization. Results AC was specifically sensitive in detecting the effect of tillage treatment at different soil depths. NMP differentiated between all different tillage treatments in the upper soil layer, it showed the temporal dynamics between the years in the compost LTE, and it was identified as an early detection property in the crop residue LTE. Both AC and NMP detected short‐term fluctuations better than TOC and Nt over the course of two years in the crop residue LTE. Conclusion We suggest that AC and NMP are two valuable soil biochemical parameters providing more detailed information on C and N dynamics regarding depth distribution and seasonal dynamics and react more sensitively to different agricultural management practices compared to TOC and Nt. They should be integrated in monitoring agricultural long‐term experiments (LTEs) and in field analyses conducted by farmers. However, when evaluating results towards long‐term carbon storage, their sensitivity toward annual fluctuations should be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.