Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fascinatingly, an abundance of recent studies has subscribed to the importance of cytotoxic immune mechanisms that appear to increase the risk/trigger for many progressive neurodegenerative disorders, including Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis, and multiple sclerosis. Events associated with the neuroinflammatory cascades, such as ageing, immunologic dysfunction, and eventually disruption of the blood–brain barrier and the “cytokine storm”, appear to be orchestrated mainly through the activation of microglial cells and communication with the neurons. The inflammatory processes prompt cellular protein dyshomeostasis. Parkinson’s and Alzheimer’s disease share a common feature marked by characteristic pathological hallmarks of abnormal neuronal protein accumulation. These Lewy bodies contain misfolded α-synuclein aggregates in PD or in the case of AD, they are Aβ deposits and tau-containing neurofibrillary tangles. Subsequently, these abnormal protein aggregates further elicit neurotoxic processes and events which contribute to the onset of neurodegeneration and to its progression including aggravation of neuroinflammation. However, there is a caveat for exclusively linking neuroinflammation with neurodegeneration, since it’s highly unlikely that immune dysregulation is the only factor that contributes to the manifestation of many of these neurodegenerative disorders. It is unquestionably a complex interaction with other factors such as genetics, age, and environment. This endorses the “multiple hit hypothesis”. Consequently, if the host has a genetic susceptibility coupled to an age-related weakened immune system, this makes them more susceptible to the virus/bacteria-related infection. This may trigger the onset of chronic cytotoxic neuroinflammatory processes leading to protein dyshomeostasis and accumulation, and finally, these events lead to neuronal destruction. Here, we differentiate “neuroinflammation” and “inflammation” with regard to the involvement of the blood–brain barrier, which seems to be intact in the case of neuroinflammation but defect in the case of inflammation. There is a neuroinflammation-inflammation continuum with regard to virus-induced brain affection. Therefore, we propose a staging of this process, which might be further developed by adding blood- and CSF parameters, their stage-dependent composition and stage-dependent severeness grade. If so, this might be suitable to optimise therapeutic strategies to fight brain neuroinflammation in its beginning and avoid inflammation at all.
Fascinatingly, an abundance of recent studies has subscribed to the importance of cytotoxic immune mechanisms that appear to increase the risk/trigger for many progressive neurodegenerative disorders, including Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis, and multiple sclerosis. Events associated with the neuroinflammatory cascades, such as ageing, immunologic dysfunction, and eventually disruption of the blood–brain barrier and the “cytokine storm”, appear to be orchestrated mainly through the activation of microglial cells and communication with the neurons. The inflammatory processes prompt cellular protein dyshomeostasis. Parkinson’s and Alzheimer’s disease share a common feature marked by characteristic pathological hallmarks of abnormal neuronal protein accumulation. These Lewy bodies contain misfolded α-synuclein aggregates in PD or in the case of AD, they are Aβ deposits and tau-containing neurofibrillary tangles. Subsequently, these abnormal protein aggregates further elicit neurotoxic processes and events which contribute to the onset of neurodegeneration and to its progression including aggravation of neuroinflammation. However, there is a caveat for exclusively linking neuroinflammation with neurodegeneration, since it’s highly unlikely that immune dysregulation is the only factor that contributes to the manifestation of many of these neurodegenerative disorders. It is unquestionably a complex interaction with other factors such as genetics, age, and environment. This endorses the “multiple hit hypothesis”. Consequently, if the host has a genetic susceptibility coupled to an age-related weakened immune system, this makes them more susceptible to the virus/bacteria-related infection. This may trigger the onset of chronic cytotoxic neuroinflammatory processes leading to protein dyshomeostasis and accumulation, and finally, these events lead to neuronal destruction. Here, we differentiate “neuroinflammation” and “inflammation” with regard to the involvement of the blood–brain barrier, which seems to be intact in the case of neuroinflammation but defect in the case of inflammation. There is a neuroinflammation-inflammation continuum with regard to virus-induced brain affection. Therefore, we propose a staging of this process, which might be further developed by adding blood- and CSF parameters, their stage-dependent composition and stage-dependent severeness grade. If so, this might be suitable to optimise therapeutic strategies to fight brain neuroinflammation in its beginning and avoid inflammation at all.
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2, although largely affecting the respiratory system, commonly presents with numerous clinical symptoms from other systems. COVID-19 has been associated with both acute and persistent neurological abnormalities in a substantial proportion of patients. Notably, post-COVID-19 neuropsychological abnormalities have garnered attention, highlighting a high prevalence of neurocognitive issues in affected individuals. This narrative review synthesizes current knowledge on the neuropsychological impact of COVID-19, drawing insights from an extensive online search of published literature conducted in the PubMed (MEDLINE) and Scopus databases. The findings underscore significant neuropsychological effects of COVID-19 observed at both individual and societal levels during the ongoing pandemic. Neuropsychological deficits such as memory difficulties, attention problems, and executive dysfunction, alongside physical symptoms like headaches and fatigue were commonly reported. Additionally, psychological challenges, including fear, anxiety, and depression, emerged as prevalent issues arising from the uncertainties surrounding the situation, social isolation, and employment insecurities. The identified neuropsychological manifestations of COVID-19 can significantly impede normal cognitive and emotional functioning, potentially resulting in decreased productivity and an overall decline in mental health and quality of life. Early identification of signs indicative of neurological or psychological decline becomes imperative, offering a crucial opportunity to mitigate the risk of long-term neuropsychological dysfunction through the development of targeted interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.