Global surface temperature has increased Ϸ0.2°C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West-East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within Ϸ1°C of the maximum temperature of the past million years. We conclude that global warming of more than Ϸ1°C, relative to 2000, will constitute ''dangerous'' climate change as judged from likely effects on sea level and extermination of species.climate change ͉ El Niños ͉ global warming ͉ sea level ͉ species extinctions G lobal temperature is a popular metric for summarizing the state of global climate. Climate effects are felt locally, but the global distribution of climate response to many global climate forcings is reasonably congruent in climate models (1), suggesting that the global metric is surprisingly useful. We will argue further, consistent with earlier discussion (2, 3), that measurements in the Western Pacific and Indian Oceans provide a good indication of global temperature change.We first update our analysis of surface temperature change based on instrumental data and compare observed temperature change with predictions of global climate change made in the 1980s. We then examine current temperature anomalies in the tropical Pacific Ocean and discuss their possible significance. Finally, we compare paleoclimate and recent data, using the Earth's history to estimate the magnitude of global warming that is likely to constitute dangerous human-made climate change.
Modern Global Temperature ChangeGlobal surface temperature in more than a century of instrumental data is recorded in the Goddard Institute for Space Studies analysis for 2005. Our analysis, summarized in Fig. 1, uses documented procedures for data over land (4), satellite measurements of sea surface temperature (SST) since 1982 (5), and a ship-based analysis for earlier years (6). Estimated 2 error (95% confidence) in comparing nearby years of global temperature (Fig. 1 A), such as 1998 and 2005, decreases from 0.1°C at the beginning of the 20th century to 0.05°C in recent decades (4). Error sources include incomplete station coverage, quantified by sampling a modelgenerated data set with realistic variability at actual station locations (7), and partly subjective estimates of data quality problems (8). The estimated uncertainty of global mean temperature implies that we can only state that 2005 was probably the warmest year.The map of temperature anomalies for the first half-decade of the 21st century (Fig. 1B), relative to 1951-1980 ...