Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Subdural electrocorticography (ECoG) is a valuable technique for neuroscientific research and for emerging neurotechnological clinical applications. As ECoG grids accommodate increasing numbers of electrodes and higher densities with new manufacturing methods, the question arises at what point the benefit of higher density ECoG is outweighed by spatial oversampling. To clarify the optimal spacing between ECoG electrodes, in the current study we evaluate how ECoG grid density relates to the amount of non-shared neurophysiological information between electrode pairs, focusing on the sensorimotor cortex. We simultaneously recorded high-density (HD, 3 mm pitch) and ultra-high-density (UHD, 0.9 mm pitch) ECoG, obtained intraoperatively from six participants. We developed a new metric, the normalized differential root mean square (ndRMS), to quantify the information that is not shared between electrode pairs. The ndRMS increases with inter-electrode center-to-center distance up to 15 mm, after which it plateaus. We observed differences in ndRMS between frequency bands, which we interpret in terms of oscillations in frequencies below 32 Hz with phase differences between pairs, versus (un)correlated signal fluctuations in the frequency range above 64 Hz. The finding that UHD recordings yield significantly higher ndRMS than HD recordings is attributed to the amount of tissue sampled by each electrode. These results suggest that ECoG densities with submillimeter electrode distances are likely justified.
Subdural electrocorticography (ECoG) is a valuable technique for neuroscientific research and for emerging neurotechnological clinical applications. As ECoG grids accommodate increasing numbers of electrodes and higher densities with new manufacturing methods, the question arises at what point the benefit of higher density ECoG is outweighed by spatial oversampling. To clarify the optimal spacing between ECoG electrodes, in the current study we evaluate how ECoG grid density relates to the amount of non-shared neurophysiological information between electrode pairs, focusing on the sensorimotor cortex. We simultaneously recorded high-density (HD, 3 mm pitch) and ultra-high-density (UHD, 0.9 mm pitch) ECoG, obtained intraoperatively from six participants. We developed a new metric, the normalized differential root mean square (ndRMS), to quantify the information that is not shared between electrode pairs. The ndRMS increases with inter-electrode center-to-center distance up to 15 mm, after which it plateaus. We observed differences in ndRMS between frequency bands, which we interpret in terms of oscillations in frequencies below 32 Hz with phase differences between pairs, versus (un)correlated signal fluctuations in the frequency range above 64 Hz. The finding that UHD recordings yield significantly higher ndRMS than HD recordings is attributed to the amount of tissue sampled by each electrode. These results suggest that ECoG densities with submillimeter electrode distances are likely justified.
Phase coherence and amplitude correlations across brain regions are two main mechanisms of connectivity that govern brain dynamics at multiple scales. However, despite the increasing evidence that associates these mechanisms with brain functions and cognitive processes, the relationship between these different coupling modes is not well understood. Here, we study the causal relation between both types of functional coupling across multiple cortical areas. While most of the studies adopt a definition based on pairs of electrodes or regions of interest, we here employ a multichannel approach that provides us with a time-resolved definition of phase and amplitude coupling parameters. Using data recorded with a multichannel μECoG array from the ferret brain, we found that the transmission of information between both modes can be unidirectional or bidirectional, depending on the frequency band of the underlying signal. These results were reproduced in magnetoencephalography (MEG) data recorded during resting from the human brain. We show that this transmission of information occurs in a model of coupled oscillators and may represent a generic feature of a dynamical system. Together, our findings open the possibility of a general mechanism that may govern multi-scale interactions in brain dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.