What Do Hebbian Learners Learn? Reduction Axioms for Iterated Hebbian Learning
Caleb Schultz Kisby,
Saúl A. Blanco,
Lawrence S. Moss
Abstract:This paper is a contribution to neural network semantics, a foundational framework for neuro-symbolic AI. The key insight of this theory is that logical operators can be mapped to operators on neural network states. In this paper, we do this for a neural network learning operator. We map a dynamic operator [φ] to iterated Hebbian learning, a simple learning policy that updates a neural network by repeatedly applying Hebb's learning rule until the net reaches a fixed-point. Our main result is that we can "trans… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.